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A k-borne laser altimetry is a remote sensing technique 
that can provide high resolution data on the roughness 
of the landscape both for estimating water balance com- 
ponents and for distinguishing between landscapes. Mod- 
els of the scale-dependent roughness are needed to find 
scales most appropriate for these purposes. Our objectives 
were to apply fractal scaling to high-resolution profiling 
laser altimetry data and to determine fractal parameters 

for dijherentiating land cover. Data were collected at the 
USDA-ARS Jornada Experimental Range in New Mexico 
over grass-dominated and shrub-dominated sites along 

four transects at each site. Scale-dependent root-mean- 
square @MS) roughness and data power spectrums were 
computed from 100,000 data points (~2 km) from each 
transect. A linearity measure and piecewise linear ap- 
proximation were applied to find intervals of the fractal 
scaling. The RMS roughness data had two intervals of 
self-a$ne fractal scaling on grass transects and four such 
intervals on shrub transects, Reduction in the number of 
data points did not lead to a decrease in roughness but 
caused a smoothing dependency of fractal dimension on 
scale. Ten- and hundred-meter scales were appropriate 
for distinguishing between grass and shrub transects on 
the basis of fractal dimensions. Published by Elsevier 
Science Inc. 
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INTRODUCTION 

Airborne laser altimetry is a remote sensing technique 
that can provide high vertical and horizontal resolution 
data (Ritchie, 1995). Such high-resolution measurements 
provide detailed data on the roughness of the Iandscape, 
which is a key property in assessing components of the 
evapotranspiration demand (Menenti and Ritchie, 1994). 
In particular, aerodynamic roughness can be estimated 
from data on landscape roughness. Land cover and land- 
forms affect roughness, and roughness can be used to 
distinguish between landscapes. Models of dependencies 
of roughness on scale are needed to use laser altimetry 
data for this purpose. 

Fractal geometry provides appropriate tools to quan- 
tify scale-dependent roughness. Fractal models are de- 
signed to describe rugged surfaces displaying a similarity 
in features persisting over a range of spatial scales. This 
kind of similarity has been observed for the topography 
of the Earth’s surface obtained from digitized maps 
(Klinkenberg and Goodchild, 1992; Mark and Aronson, 
1984; Ouchi and Matsushita, 1992) and for sonar mea- 
surements of seabeds (Fox and Hayes, 1985; Gilbert, 
1989; Malinvemo, 1989). For fractal scaling, remote 
sensing images can be considered a topographical surface 
(De Jong and Burrough, 1995). Frdctdl modeling has 
been applied to ground-based photography (Carr, I999), 
aeromagnetic data (Gregotsb et al., 1991), Landsat the- 
matic mapper images (DeGola, 1989; Lam, 1990), ther- 
mal infrared multispectral data (Jaggi et al., 1993), and 
airborne imaging spectrometer data (De Jong and Bur- 
rough, 1995). 

Fractal geometry was developed to describe the bi- 
erarchy of ever-finer details in the real world. Natural 
objects have similar features at various scales. Measures 
of these features (e.g., the total number of features, the 
total lengths, the total mass, the average roughness, the 
total surface area, etc.) are dependent on the scale at 
which features are observed. This dependence is the 
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same over a range of scales (i.e., scale invariant within 
this range). When expressed mathematically, the depen- 
dence becomes a fractal scaling law. In a classic example, 
“the length of the coastline increases as the length of the 
measuring rod decreases according to a power law. The 
power determines the fractal dimension of the coastline” 
(Turcotte, 1992). The larger the fractal dimension, the 
more rugged is the object under study. 

Both isotropic and anisotropic fractals are found in 
topography (Turcotte, 1992). Self-similar fractals are iso- 
tropic, which means that, in two-dimensional x-y space, 
j-ky) is s a ‘s ‘c t tl tl all y similar tof(rrr,y), where r is a scaling 
factor. Self-affine fractals are anisotropic, which means 
that, in two-dimensional r-y space, f(x,y) is statistically 
similar tof(rx,rHy), where r is a scaling factor and H is 
called the Hurst exponent. That is, magnifying the hori- 
zontal scale r times has to correspond to magnifying the 
vertical scale 7-H times (Mandelbrot, 1986). Surface mea- 
surements obtained by remote sensing or created from 
remote sensing data are usually treated as self-affine sur- 
faces (Andrle and Abrahams, 1990; Polidori et al., 1991; 
Shepard et al., 1995) with different vertical and lateral 
scaling. 

High values of the Hurst exponent indicate some 
memory or autocorrelation in the data. Low values sug- 
gest an anticorrelation or self-correcting response (Russ, 
1994). The Hurst exponent is related to the fractal di- 
mension D, of the surface as (Mandelbrot, 1986) 

D,=3-H. (1) 

Smooth surfaces have fractal dimensions close to 2. Highly 
irregular surfaces have fractal dimensions close to 3. 

A line formed as a cross section of any fractal self- 
affine surface and a vertical plane will also display self- 
affine properties. This line will have a fractal dimension 
DL~ related to the fractal dimension of the surface and to 
the Hurst exponent H as (Mandelbrot, 1986) 

D,=D,-1=2-H. (2) 

At any particular scale, any two consecutive height varia- 
tions .are likely to have opposite signs when the fractal 
dimension DL is larger than 1.5. When the fractal dimen- 
sion DL is less than 1.5, any two consecutive height varia- 
tions are likely to have the same sign (Polidori et al., 
1991). 

Fractal scaling is valid for a range of scales. Outside 
this range, the scaling may not be applicable at all or 
may be applicable with different fractal dimensions. In 
most studies in geomorphology and remote sensing, the 
total range of scales studied has encompassed two or 
more ranges of scales with distinctly different fractal di- 
mensions (Andrle and Abrahams, 1990; Fox and Hayes, 
1985; Hallet, 1989; Klinkenberg and Goodchild, 1992; 
Mahnvemo, 1989; Mark and Aronson, 1984). 

Both the fractal dimension and boundaries of a frac- 
tal scale range are parameters of a fractal model (Pfeifer 

and Obert, 1990) and as such can be used to distinguish 
between surfaces or between cross sections of surfaces. 
Several authors have shown relations between landscape 
features and parameters of fractal models developed 
from topographic and remote sensing data (De Jong and 
Burrough, 1995; Klinkenberg and Goodchild, 1992; Mark 
and Aronson, 1984; Ouchi and Matsushita, 1992). 

Several methods have been proposed to estimate 
fractal dimensions from measurements of self-affine sur- 
faces. Different methods usually yield different results 
(Klinkenberg and Goodchild, 1992; Shepard et al., 1995). 
Sometimes the differences are explained by the fact that, 
even if the surface or line is an ideal fractal, the discrete 
sampling, resampling, and filtering of data may cause a 
loss of information (Dubuc et al., 1989; Mahnvemo, 
1990). Another explanation assumes that the surfaces or 
lines under study are not ideal fractals, and this affects 
the results of different methods in different ways (Jaggi 
et al., 1993; Roach and Fouler, 1993). Methods may vary 
in their sensitivity to noise in the data (De Jong and Bur- 
rough, 1995). Boundaries of the range where the self- 
affinity holds are often found manually. This may serve 
as an additional source of uncertainty (Rees and Miller, 
1990; Yokoya et al., 1989). 

Even if the same method of data analysis is used, 
values of the fractal parameters may depend on the noise 
and the pixel size inherent to remote sensing technique 
used to measure the variable of interest (De Jong and 
Burrough, 1995). 

The USDA ARS Jomada Experimental Range has 
a long-term experimental program designed to study 
changes in vegetation pattern and to estimate water bal- 
ance of desert ecosystems. The laser altimetry data col- 
lected at this site are being used to estimate the aerody- 
namic roughness and to measure vegetation properties. 
The objectives of this study were to use laser altimeter 
data to determine fractal properties of the landscape sur- 
face roughness at different scales and to use fractal prop- 
erties to discriminate landscapes with different land covers. 

MATERIALS AND METHODS 

Study Area 

Airborne laser altimetry data were collected at the USDA 
ARS Jomada Experimental Range in southern New Mex- 
ico. The Jomada Experimental Range lies within the 
Chihuahuan Desert ecosystem. Annual averages for pre- 
cipitation and temperature are 241 mm and 15°C re- 
spectively. Flora is characteristic of a subtropical ecosys- 
tem in the hot desert biome. Grasses and shrubs 
dominate the area landscapes. 

The Experimental Range is located on the La Mesa 
geomorphic surface of middle Pleistocene age (>400,000 
B.P.). The ancestral Rio Grande river deposited sedi- 
ments on this plain. The study sites have Typic Haplar- 
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Figure 1. Typical views of grass-dom- 
inated (a) and shrub-dominated (b) 
landscapes in the USDA-ARS Jomada 
Experimental Range. 

gid and Paleargid soils that have developed from allu- 
vium in level basins below the piedmonts. Wind in this 
region commonly modifies these gentle sloping surfaces. 
The soils are loamy sands and fine loamy sands typical 
of the Onite, Pajarito, Pintura, and Wink series. These 
soils are moderately deep but have calcic horizons of var- 
ying thicknesses relatively close to the surface. Detailed 
description of relief and vegetation patterns can be found 
in the paper by Buffington and Herbel (1965). 

Laser altimetry data collected over grass-dominated 
and shrub-dominated sites were used in the analyses. 
Typical views of the two types of landscape are shown 
in photographs in Fig. 1. The grass site had a uniform 
cover of black grama on level ground with only small un- 

dulations. Honey mesquite on coppice dunes dominated 
the shrub site (Buffington and Herbel, 1965). The domi- 
nant wind direction is from the southwest, coppice dunes 
tend to be oval rather than circular, with their longest 
diameter in the southwest to northeast direction. These 
coppice dunes range in height from 2 to 8 m and in di- 
ameter from 3 to 1Fi m. 

Laser Measurements 

A laser altimeter mounted in an airplane was used to 
measure the distance from the airplane to the landscape 
surface. The altimeter is a pulsed gallium-arsenide diode 
laser, transmitting and receiving 4000 pulses/s at a wavc- 
length of 904 nm. The field of view of the laser is 0.6 
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mrad, which gives a “footprint” on the ground that is ap- 
proximately 0.06% of the altitude. The timing electronics 
of the laser receiver allow a vertical resolution of 5 cm 
for each measurement. 

Digital data (distance from the airplane to the land- 
scape surface) from the laser receiver along with data 
from a gyroscope and an accelerometer mounted on the 
base of the laser platform are recorded with a portable 
personal computer. A video camera, borehole sighted 
with the laser, records an image of the flight line. Sixty 
video frames are recorded per second, and frames are 
annotated with consecutive numbers, clock times, and 
ground-positioning-system data. Each video frame num- 
ber is recorded with digital laser data by the computer 
to allow precise correlation of the laser data on the land- 
scape with the video data for these studies. 

Four airborne laser transects, referred to as A, B, C, 
D, were made at the grass site and four (E, F, G, H) 
were made at the shrub site in May 1995. At each site, 
two transects were in the north-south (C, D, G, H) di- 
rection and two were in the east-west (A, B, E, F) direc- 
tions, all from an altitude of 200 m. The data sets used in 
the fractal analyses included 100,000 laser measurements 
(approximately 2 km) for each of the eight laser tran- 
sects. The total number of transects reflected resources 
available for this study. 

Landscape surface elevation was calculated for each 
laser measurement by using known ground elevations 
along a flight line to convert the relative data into abso- 
lute elevations. 

Data Analysis 

Construction of a fractal model for a line includes the 
(1) selection of a property to be calculated on different 
scales, (2) selection of a procedure to define ranges of 
scales within which the self-affinity exists, and (3) selec- 
tion of a method to calculate fractal dimensions for each 
range of the self-affinity. 

We calculated the root-mean-square roughness known 
to display fractal scaling along the cross sections of self- 
affine surfaces (Russ, 1994). Root-mean-square rough- 
ness is the root-mean-square (RMS) value of residuals on 
a linear trend fitted to the sampled points in an interval 
(Malinvemo, 1990). The interval is called a “window.” 
The RMS roughness is found as 

where n, is the total number of windows of length w, mi 
is the number of points in the window, and zj are residu- 
als of the trend. Following the recommendations of 
Malinvemo (1990), we began with a short span con- 
taining at least 10 points and increased to window 
lengths that were 20% of the total length of the data se- 
ries, and we made adjacent windows overlap by 50% of 

the window length. The window length was incremented 
by one sampling interval Ax; that is, each window of a 
new scale covered one extra point in comparison with 
the preceeding scale. In the range of scales, where the 
dependence of log(RMS) on log(w) is linear, the slope 
of this dependence is the Hurst exponent H introduced 
in Eqs. (1) and (2). 

For the purpose of using fractal parameters to dis- 
criminate between landscapes, we calculated the power 
spectrum of the elevation data along transects. The spec- 
tral method is the most widely used (Turcotte, 1992) and 
is based on the inference that a self-affine series should 
have a power spectrum 

Pcf) = q-8, (4) 

where P is power (i.e., mean square amplitude), f is fre- 
quency, C is a scaling coefficient, and the spectral expo- 
nent p is related to the fractal dimension by 

We plotted log(P) versus log(T), where T=Ax/f is the 
wavelength of harmonic oscillations. In the range of 
scales, where the dependence of log(P) on log(T) is lin- 
ear, the slope of this dependence is equal to p intro- 
duced in Eqs. (4) and (5). 

To define ranges of scales over which self-affinity ex- 
ists, we tested two procedures: the calculations of (1) a 
linearity measure and (2) a piecewise linear approxima- 
tion. The linearity measure L introduced in fractal mod- 
eling by Yokoya et al. (1989) and Rees and Miller (1990) 
is calculated for the set of points in a plane as 

L=I/4ti,,+(rr,-rrJ 
(6) 

qy + 0x1 

where o,, ayv, and crXy represent the variance of x-coordi- 
nates, the variance of y-coordinates, and the covariance 
between x and y coordinate sets, respectively. This mea- 
sure L falls between 0 and 1, being equal to 1 for points 
on a straight line and equal to 0 for uncorrelated ran- 
domly distributed points. To separate linearity intervals 
on log-log plots, the value of L is computed for the first 
four points, then for the first five points, and so on, while 
the value of L increases. The end of the first linearity 
interval will be in the point after which the value of L 

begins to decrease. Then the next point is considered the 
first point of the next linearity interval. This point is used 
as the first one in computations of L for the expanding 
sets of points while L increases. The end of the second 
linearity interval will again be in the point after which 
values of L begin to decrease. Then the next point is 
considered the first point of the third linearity interval, 
and so forth. The separation of linearity intervals ends 
when all points are used in computations. For each lin- 
earity interval, a linear regression over points within this 
interval yields the value of H or the value of /I if the 
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dependencies of log(RMS) on log(w) or dependencies of 
log(P) on log(T) are analyzed, respectively. The fractal 
dimension of the line D, is obtained from Eq. (2) or (5). 

To do the piecewise linear approximation of data on 
log-log plots, we inspected the plots and selected the to- 
tal number of linear segments by visual check. Then we 
applied the technique described by Pachepsky et al. 
(1995). A piecewise linear approximation of the depen- 
dence of ln(RMS) on In(w) has been used in the form 

L-l 

ln(RMS)““=B+ x(D,+,-D,)ln(w,)+(2-D,)ln(u), u+w<wj+,. 
,=O 

L=1,2, . ,M (7) 

Here M is the assumed number of linearity intervals in 
the structure; wn,wl, . . . ,wa, are cutoffs of the sequential 
fractal intervals; wI-i and wj are lower and upper cutoffs 
of thejth linearity interval; Dj is the fractal dimension at 
the jth interval; B is a matching constant; and Do=D,. 
For example, a structure with three linearity intervals 
(M=3) is described by the formula 

ln(RMS):““= 

I 

B +i2-DJn(w), w&w<w, 

B+(DI-D&(~I) +(2-DJn(w), w,~w<l.Q 
B+(D]--De)ln(wl)+(De-D3)ln(we)+(2-D&(w), wzSwSw3 

(8) 

Average values of parameters B, DI, . . . ,D,, wl, . . , 
w,,-~ have been estimated by nonlinear minimization of 
the lack-of-fit mean square, which is known to be an un- 
biased estimator of the model’s standard error (Whit- 
more, 1991): 

N 
~,mi[ln(RMS)F”lc-ln(RMS):‘““]2 

,y,= v i=t 
N-P 

(9) 

Here (RMS)‘““” IS the root-mean-square roughness esti- 
mated from measured values, (RMS)““” is the root-mean- 
square roughness estimated from Eq. (2), N is the total 
number of measured RMS values, mi is the number of 
replications in the measurements at the ith RMS value, 
and P is the number of parameters (P=2M for this case). 
The Marquardt-Levenberg algorithm was used to esti- 
mate both the boundaries of the linearity ranges and the 
slopes of the segments approximating data within those 
ranges. Both values of parameters and standard errors of 
parameters were estimated in this way. To avoid local 
minima, we made 100 runs for each data set, each time 
randomly changing the initial estimates of all parameters. 

Linearity intervals have to be wide enough to be 
considered ranges of the fractal scaling. The minimum 
theoretical ratio between upper and lower boundaries of 
the fractal scale range is 2 IID (Pfeifer and Ober, 1990). A 
self&fine line may have this ratio between 2l” and 2. 
We excluded all linearity intervals for which the ratio of 
the boundaries was smaller than 2. 

To compute Fourier spectra of data, we used stan- 
dard programs (SPCTRM and FOURl) developed by 
Press et al. (1990). The computer programs written in 
FORTRAN for all other computations are available upon 
request from the authors. 

RESULTS 

Plots of a typical laser altimetry profile of a north-south 
transect for the grass (Fig. 2) and shrub (Fig. 3) sites 
show the differences in surface properties at the sites. 
Figures 2 and 3 were plotted by using a 12-measurement 
block average to display the data and correspond to grass 
data transect C and shrub data transect G used in our 
analysis. The grass site shows a relatively smooth surface 
with an occasional shrub or taller object. The shrub site 
shows a topography of dunes superimposed on the rela- 
tively rough surface. Spikes correspond to shrubs. 

Plots of the RMS roughness versus spatial scale are 
shown in Fig. 4. Visual inspection of graphs shows that 
more than one range of self-affine fractal scaling can be 
found and that different fractal dimensions can be ex- 
pected in different ranges of scales. A difference was 
found between data for the grass and the shrub tran- 
sects, using the RMS data (Fig. 4). Grass transects have 
low roughness with scales up to 20 m. At larger scales, 
the roughness steeply increases with scale and displays 
consistent fractal scaling. Shrub transects have the rough- 
ness rapidly increasing as the scale increases. At least 
four segments of linearity can be seen in the shrub-dom- 
inated transects. 

The power spectrum plots (not shown) have tnore 
noise than the RMS roughness plots in Fig. 4. The dif- 
ferences between grass and shrub transects are still ex- 
pressed. In grass transects, the amplitudes of the Fourier 
components with low wavelengths are small. Wave- 
lengths T of 10-20 m mark the limit beyond which the 
power spectrum grows fast as 2’ increases. The data show 
that more than two linearity intervals may be appropriate 
for grass transects. In shrub transects, the small wave- 
lengths (l-5 m) correspond to larger power spectra than 
in the grass transects. At least four segments of linearity 
can be distinguished in the shrub transects. 

Results of applying the linearity measure to separate 
different ranges of fractal scaling on roughness plots arc 
shown in Figure 5. Grass transects have two or three lin- 
earity intervals within the l-10 m scale range. The frac- 
tal dimension of those intervals is close to 2, inferring 
very high irregularitv. Most of the differences between 
fractal dimension in these intervals are not statistically 
significant, but the linearity measure algorithm based on 

the linearity measure distinguishes between these inter- 
vals. The range of scales between 10 and 60 m includes 
6-7 intervals of linearity, but all are too short to be con- 
sidered true ranges of the fractal scaling. A large internal 
of fractal scaling lies between 60 and 200300 tn. Here 
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Figure 2. A laser altimetry profile 
of a north-south transect made at 
the grass-dominated site (C). Data 
were plotted by using a 12-mea- 
surement block average to display 
the data. Insert shows full-resolu- 
tion laser data. 
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Figure 3. A laser altimetry pro- 
file of a north-south transect 
made at the shrub-dominated 
site (G). Data were plotted by 
using a 12-measurement block 
average to display the data. In- 
sert shows full-resolution laser 
data. 
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Figure 4. Log-log plots of root- 
mean-square roughness versus the 0.1 

length of intervals over which it 
was calculated (window size): 1 10 100 1 10 100 1 10 100 1 10 100 1000 

(A-D) grass transects; (E-H) 
shrub transects. Window size, w (m) 

has a moderate irregularity close to that of the white 
noise, with DL about 1.5. 

Because the grass and the shrub transects had differ- 
ent sequences of the fractal scaling intervals, a statistical 
comparison of within-landscape and between-landscape 
variation could be done where scaling ranges overlapped. 
Ten- and hundred-meter windows were appropriate for 
this purpose. In the scale ranges including 10-m win- 
dows, mean*standard deviation was 1.93+O.O1 and 1.68+ 
0.10 for the grass and shrub transects, respectively. In 
the scale ranges covering 100-m windows, meanrtstan- 
dard deviation was l.l5t-0.10 and 1.45-+0.08 for the 
grass and shrub transects, respectively. The difference 
between means in grass and shrub transects was signifi- 
cant at the 0.05 level both for 10-m and for 100-m win- 
dows as shown with two-sample heteroschedastic Stu- 
dent’s test. 

The piecewise linear approximation of roughness 
data in Figure 4 resulted in the estimates of fractal di- 
mensions and scale range boundaries shown in Table 1. 
Estimated standard errors of all parameters are low (not 
shown), so the coefficients of variation are less than 2%. 
The piecewise linear approximation reveals qualitatively 
the same dependence of scaling as do the linearity mea- 
sure applications shown in Figure 6. However, a piece- 
wise linear approximation provides a shift of all scaling 
ranges toward larger values compared with the linearity 
measure application. The piecewise linear approximation 
also leads to smaller fractal dimensions in largest scale 

range than does linearity measure. The grass transects 
have fairly uniform fractal parameters, whereas the shrub 
transects appear to have some differences between east- 
west and north-south transects. 

The piecewise linear approximation of the power 
spectra data resulted in estimates of fractal dimensions 
that were mostly out of the acceptable range between 1 
and 2. 

Airborne laser altimetry creates large data sets that 
may be difficult to visualize and manage. We evaluated 
three techniques to see if they have any effect on the 
fractal properties of laser altimetry data: (1) using shorter 
transects, (2) block averaging, and (3) data decimation. 

To assess the effects of using shorter transects on 
fractal parameters, existing transects were divided into 
five equal subtransects. The RMS roughness and fractal 
parameters were calculated at scales that were within 
20% of the length of the new transects. We did not find 
any statistically significant differences betweeu averaged 
values of parameters obtained for subtransects and the 
estimates of the same parameters for the parent transect, 

Block averaging markedly diminished roughness at 
low scales (Figs. 6a, 6c, and 6d). Scaling was still possi- 
ble, but the fractal dimension at low scales was dimin- 
ished and the range of scaling between 4 and 20 m dis- 
appeared (Fig. 7a). Other linearity intervals and vahres 
of fractal dimensions in these intervals were preserved. 

Reducing the number of points by preserving each 
fifth or tenth point did not decrease the roughness (Figs. 
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Figure 5. Intervals of linearity and fractal dimensions estimated by applying linearity measure of Yo- 
kova et al. (1989) to deaendencies of the root-mean-square roughness on the window size: (A-D) grass i I 

transects; (E-H) shrub transects. 

7e and 70. Such reduction, however, leads to smoothing 
dependencies of the fractal dimension on the scale, as 
shown in Figure 7h. A moving averaging resulted in both 
decrease of roughness and smoothing dependencies of 
the fractal dimension on the scale as shown in Figures 
7b and 7c. 

DISCUSSION 

Fractal scaling appears to be applicable to the data of 
laser altimetry. However, a hierarchical arrangement of 
fractals in a scale-dependent model was needed to simu- 
late the irregularity revealed by laser altimetry data. 

The graphs of grass and shrub transects showing 
scale dependent root-mean-square roughness have quite 
different shapes. The values of roughness at scales of 
about 1-2 m is the same in all transects. This level of 
roughness probably manifests the intrinsic irregularity of 
data caused by random and systematic system noise. Al- 
most the same roughness and the fractal dimension close 
to 2 exist in grass transects on scales from 1 to 20 m. 
This probably means that no particular feature of land- 
scape is pronounced within these scales. In shrub tran- 
sects, scales between 4 and 30 m represent an interval 
where the roughness is significantly diminished. Scaling 
in this range may reflect a similarity in dune and shrub 

Table 1. Fractal Parameters Obtained by Using a Piecewise Linear 
Approximation of Log (Roughness)-Log (Window Size) Dependencies for Grass 
(A, B, C, D) and Shrub (E, F, G, H) Transets 

Roughness Lower Boundaries Fractal Dimensions 
over l-m of the Linearity Ranges (m) over the Linearity Ranges 

Transect Windows 2” 3 4 1 2 3 4 

0.12 35.1 81.2 ml” 
0.12 29.8 64.7 nd 
0.12 25.4 45.6 nd 
0.12 36.2 83.3 nd 
0.12 4.23 11.5 147.1 
0.12 4.62 22.2 134.2 
0.12 3.83 59.8 100.1 
0.12 4.20 61.7 119.8 

1.92 1.44 1.09 nd 
1.93 1.48 1.07 nd 
1.93 1.66 1.24 nd 
1.92 1.40 1.00 nd 
1.87 1.63 1.67 1.24 
1.87 1.58 1.74 1.46 
1.93 1.77 1.58 1.38 
1.93 1.79 1.56 1.25 

” The lower boundary of linearity range 1 is set at 1 m. Because of the piecewise approximation 
used, range 2 begins where range 1 ends, range 3 begins where range 2 ends, and range 4 begins 
where range 3 ends. 

” Not defined. 
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Figure 6. Effect of sampling and resampling on de- 
pendencies of root-mean-square roughness on 
length of intervals over which it was calculated (win- 
dow size) for the shrub transect: (a) original data 
set; (b) 7-point moving average in each point; (c, d) 
block average-5 and 10 points in a block, respec- 
tively: (e, f) decimating data-taking each fifth and 
each tenth point, respectively. 

size and placement. The range of scale (6 to 30 m) is 
also similar to the diameter of dunes along these tran- 
sects. The difference between scaling for the east-west 
and north-south transects in Table 1 may be due to dune 
shape. Because the dunes have their longest diameter in 
the southwest to northeast direction, the difference in 
fractal dimensions between the east-west and north- 
south transects may be due to dune orientation. This an- 
isotropy of the fractal dimension is qualitatively similar 
to the anisotropy reported by Fox and Hayes (1985) and 
Loehle (1994) for generated and natural surfaces that are 
close to plane waves. The next interval of scaling be- 
tween 30 and 60-90 m may reflect features of both to- 
pography and vegetation related to the arrangement of 
shrubs in clumps. This hypothetical explanation of the 
existence of several scale ranges corresponds to the ob- 
servation made by Mark and Aronson (1984) that the 
limits of self-affinity generally correspond to some typical 
feature in the landscape. 

Scales larger than 60-90 m are probably reflecting 
self-affine arrangement of the relief. Grass landscapes 
have lower fractal dimensions in this range of scales. 
Culling and Datko (1987) have suggested that a general 
diffusion degradation regime will tend to smooth the 
landscape and thereby decrease the fractal dimension. 
On the other hand, they have pointed out that drainage 
systems will tend to add irregularity to the landscape 
through incision and rejuvenation and will increase the 
value of the fractal dimension. We hypothesize that, in 
the site of our studies, the landscapes with larger fractal 
dimensions may be more suitable for shrub growth be- 
cause of the presence of the coppice dunes. 

The increase in fractal dimension in shrubs at scales 
between 30 and 60-90 m in principle could be related 
to a period&y in elevation data. We calculated semivari- 
ograms of the data (not shown) and did not find any indi- 
cation of the presence of a periodic component in our 
data, because all semivariograms were monotonously in- 
creasing functions. 

Overall, the fiactal dimensions and irregularities de- 
creased as the scale increased in this study. The opposite 
trend was also observed. For example, Polidori et al. 
(1991) considered two scales and obtained D,=2.07 for 
the 1-5 pixel interval and D,=2.25 for the 19-30 pixel 
interval. The two distance intervals were chosen to dis- 
criminate between distances over which the interpolation 
process is relevant (the shortest one) and those over 
which it is not (the largest one). Interpolation is a 
smoothing operation that diminishes the fractal dimen- 
sion (Gilbert, 1989). This may explain why the small 
scale data were less irregular in the study of Pohdori et 
al. (1991). 

Applications of the power spectrum method to our 
data led to results that do not have physical meaning. 
Other researchers have encountered similar problems 
(Gilbert, 1989). Large errors associated with this method 
often occur (Talibuddin and Runt, 1994). Williams and 
Beebe (1993) compared power spectrum and RMS rough- 
ness methods and found the power spectrum method to 
be inaccurate. Examples used in our paper show that 
there may be serious restrictions in applicability of the 
power spectrum method to data with a scale-dependent 
self-affinity. 

Results of the RMS roughness method depend on 
the selection of intervals of linearity representing ranges 
of the self-affine fractal scaling on log(roughness)-log 
(scale) plots. Although both the linearity measure tech- 
nique and the piecewise linear approximation were a~‘- 
ceptable, both techniques have deficiencies. The linear 
measure technique presumes that a new interval of lin- 
earity begins just where the preceding interval ended. 
This may mask the presence of a curvilinear transition 
zone between two linear segments. The piecewise linear 
approximation includes residuals in curvilinear transition 
zones into the sum of squared residuals that is mini- 
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Figure 7. Effect of sampling and resampling on intervals of linearity and fractal dimensions esti- 
mated by applying the linearity measure of Yokoya et al. (1989) to data on shrub transect: (a) effect 
of block averaging; (b) effect of data decimating; (c) effect of moving averaging. 

mized. This represents the disadvantage that data on 
grass transects best illustrate. The middle scale (range 2 
in Table 1) defined for those transects is an artifice to 
keep two linear intervals close to data points. Such an 
artifice introduces a nonphysical entity and distorts the 
fractal dimension in the ranges where scaling is applica- 
ble. However, a two-piece linear approximation produces 
unacceptable results without this artifice. More studies 
are needed on separation of scaling range in multiscale 
data sets of laser altimetry. 

Numerical experiments with data resampling and 
filtering show that these operations may alter estimates 
of fractal parameters. Our results are in general agree- 
ment with the data of Gilbert (1989), who applied mov- 
ing average, data decimation, and linear interpolation to 
sonar data and found decreases in fractal dimensions. 

The closeness of parameters obtained from sub- 
transects to the parameters of the parent transect shows 
that the scaling ranges and parameters are applicable all 
over the transect and that the same scaling exists all over 
the transects. The working assumption here is that a sub- 
transect is a representative sample of the parent transect; 
otherwise fractal dimensions may change. 

The data obtained from transects are useful for dis- 
covering scaling properties of the landscape roughness. 
However, much more information about scaling proper- 
ties and anisotropy of roughness can he extracted from 
two-dimensional data on the surface elevations (De Jong 
and Burrough, 1995; Loehle, 1994; Russ, 1994). New 
equipment allows collection of two-dimensional altimetry 
data for comparison of one-dimensional and two-dimen- 

sional data in discriminating landscapes and in estimating 
aerodynamic roughness of the land surfaces in these 
landscapes. The high density of the two-dimensional la- 
ser altimetry data would make them suitable for testing 
new scaling models, with multifractal scaling being the 
first choice. The presence of multifractal scaling can be 
tested by considering data at different scales; as the reso- 
lution decreases, the structures on multifractal images 
become smoother and are found to occupy an increasing 
fraction of images, while simultaneously decreasing in 
value (dimming) to compensate (Lovejoy and Scher- 
tzer, 1991). 

The difference between fractal parameters of laser 
altimetry data for grass and shrub landscapes by supports 
the possibility of distinguishing between these landscapes 
by using laser altimetry. Results show that a specific 
range of scales has to be selected to use the fractal di- 
mension for distinguishing between grass and shrub 
landscapes. We realize that ranges of the fractal scale de- 
pendencies may be specific for our study. It remains to 
be seen whether several different ranges of fractal scal- 
ing of roughness can be found in other landscapes. Cal- 
culation of fractal dimensions from log-log plots involves 
the slope and intercept parameters. Whereas the slope 
is used directly to calculate the fractal dimension, the in- 
tercept is an important measure of the vertical range or 
amplitude and is another parameter characterizing fractal 
scaling (Malinverno, 1990). This value defines such pa- 
rameters of the surface roughness as the crossover length, 
topothesy, and so forth. This parameter can be included 
in the distinguishing procedure (Hallet, 1989). It remains 
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to be seen whether seasonal changes of the vegetation 
modify or change the scaling laws of the surface rough- 
ness. All these questions represent exciting horizons to 
explore. 
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